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Final Report ONR Contract N00014-79-C-0170

Fault Diagnosis

R. Saeks, Principal Investigator

Summary

The primary purpose of this contract was to assist the Naval Ocean

System Center in implementing a fault diagnosis algorithm previously developed

under ONR contract by the principle investigator. To this end our major

activity was directed towards the development of an efficient data base for

the symbolic transfer function data required by the algorithm. The resultant

data base is described in detail in this report and is characterized by both

reduced storage requirements and reduced retreival time as compared to

previous approaches. By combining this data base with the ATE and interface

work carred out by NOSC we believe that a viable fault diagnosis algorithm

for linear analog circuits can be implemented. The remaining step is to

actually encode a software package which incorporated these ideas.

I. Introduction

Historically, symbolic network analysis has been motivated by the prob-

lems of circuit design and, as such, the emphasis has been placed on

quickly and efficiently obtaining symbolic transfer function from a

given set of circuit specifications. '3  In an operational or maintenance

environment, however, one is typically given a prescribed nominal circuit

I and desires determine the effect of various (possibly large) perturbations
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thereon. This is the case in a power system where one is given a fixed

network and desires to determine the effect of proposed modifications thereto.

Alternatively, in the problem of analog circuit fault diagnosis one desires

to simulate the effect of a number of alternative failures to compare the

simulated data with the observed failure data. 4

In such an operational or maintenance environment numerous perturbations

of the nominal circuit are studied and, as such, significant computational

efficiencies can be obtained if one first generates a data base in terms

of the nominal circuit parameters and then extracts the appropriate symbolic

transfer function from the data base each time a different symbolic transfer

is required. Of course the benefit to be achieved via such an approach is

dependent on the size of the data base and the ease with which a symbolic

transfer function may be retrieved therefrom.

The obvious manner in which to generate such a data base is to simply

pre-compute the coefficients of all required symbolic transfer functions

and store them in the data base. Retreival from such a data base is, of

course, immnediate but the data base may become overly large. Indeed, the

number of transfer functions which must be stored is O0k -) where k is the

total number of potentially variable circuit parameters and P is the maximum

number of circuit parameters which may vary simultaneously. An alternative

V approach is to store the nominal transfer function information and then use

Householder's formula1I to compute the required symbolic transfer functions.

In such a data base we need only store O(n 2) transfer functions where n is

the total number of component output terminals but retreival requires
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O(n +p3 ) multiplications where p is the actual number of circuit parameters

which vary simultaneously. Since, in practice, n > p the retreival process

requires approximately O(n 3) multiplications and is dominated by the large

dimensional matrix multiplication required by Householder's formula rather

than the low dimensional inverse.

In the present reportwewill formulate an alternative data base for

the symbolic transfer functions which also requires O(n 2) entries, but for

which retreival requires only O(p3) multiplications. Since p is typically

small this is tantamount to immediate retreival.

In the remainder of this introduction we will review the properties of

the component connection model for a large scale circuit or system which

serves as the starting point for our theory. The data base and retreival

formulae for the case where p < 2 are formulated in section 2. while the

general retreival formula is derived in section 3. Section 4. is devoted

to the problem of retreiving sensitivity formulae from the data base while

section 5. deals with the problem of updating the data base when the nominal

circuit parameters are changed. Finally, section 6. is devoted to an example

illustrating the theory.

The component connection model is an algebraic model for an inter-

connected dynamical system which subsumes the classical topological models

but is more readily manipulated both analytically and computationally. The

motivation and justification of the model are discussed in detail in

reference I and will not be repeated here. The component connection model

takes the form of the set of simultaneous equations

I b = Z(jw)a 1.1
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a = L1 1b + L12u 1.2

and

y = L2 1b + L2 2U 1.3

Here, Z (=Z(jw)) is a frequency dependent matrix characterizing the decoupled

system components with composite component input and output vectors a and b,

respectively. On the other hand the Lij; ij = 1,2; matrices are frequency

independent connection matrices characterizing the coupling between the

composite component vectors, a and b, and the fomposite system input and

output vectors, u and y, respectively.

A little algebra with the component connection equations will readily

reveal that

S = L22 + L21(l - ZLll1 ZL12  1.4

where S (= S(jw)) is the composite system transfer function matrix1

characterizing the external behavior of the system via

y = S(jW)u 1.5

Often, rather than working with the entire S matrix we find it convenient

to work with its individual entries; sqv q = 1,2, ... ,g and v 1,2, ,v:

which are related to the component connection model via

Ss q v = L22 2]( -1 2 1.6

5q - 1 q + 1.l ZLqvZL'

Here L is the q-v entry in L22; q = 1,2, ... , and v = 1,2, ...,v; Lql is

the qth row of L21; q = 1,2, ... ,q; and Ll2 is the vth column of LI2;

v = 1,2,... ,v.

Finally, since we are interested in analyzing the effects of perturbing

one or more components from their nominal values, we decompose Z into

ti4
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nominal and perturbation terms in the form

Z =Z + Z1  1.7

where

k ck6kr k  1.81l k=l

Here, ck (= ck(jw)) is a column vector, rk (= rk (jw)) is a row vector, and

6k is the scalar perturbation for the kth potentially variable component

parameter. In a typical application one is given c , r , and 6

k = 1,2, ... ,k; characterizing k potentially variable component parameters

though at most p such parameters vary in any given analysis; p < p < k.

Indeed, p << k in most applications. Finally, we note that ZI can be expressed

more concisely in the form

Z = CAR 1.9

where

C = [c c2: cp  1.10

R= r1

', _rp ]

and

. -61

A 62 1.12

6p
Lt I  

6L

The above described notation formulated for the component connection model

is summarized in table 1.
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[ atrix Type Dimension Index

a composite component input m x 1
vector

b composite component output n x 1

vector

u composite system input vector V x 1

y composite system output vector a x 1
Lll connection matrix m x n

L21  connection matrix a x n
12 qth row of L21 1 x n q = 1,2, ...

L12 connection matrix m x v -

L 2 vth column of L2 m x l v = 1,2, ... v

L22 connection matrix _ x v -

9. q-v entry in L22 l x q =1,2,... ,; v=1,2, ...

S composite system transfer x v
function matrix

Sqv q-v entry in S I x 1 q=1,2, _.. ,; v=1,2, v.. ,

Z composite component transfer n x m -

Z nominal composite component n x m

Z composite component transfer n x m
function perturbation matrix

ck column vector characterizing n x 1 k 1,2, ... ,k
perturbation of kth parameter

C"array of the c vectors for the n x p
parameters chich actual vary

S(row[ck])

kr row vector characterizing 1 x m k = 1,2, ... k

R array of rk vectors for the p x m
, ,parameters which actually

vary (col[r ])
kth variable parameter I x I k =1,2,... k

A array of 6k:s for parameter p x p
which actually vary (diag[6

Table 1. Summary of Component Connection Model
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I. The Data Base

Our data base is composed of the following family of (frequency

dependent) scalar transfer functions

s q Lq v + L q(I Z-YolI ZoL V ; q = 1,2,... ,; v = 1,2, ... ,v 2.10 22 21 oo 21

bqj = L i(I - ZoLll)c ; q = 1,2, ... ,_; j = 1,2, ... ,k 2.2

d kv = rk [ + Lll(I - ZoL1 ) ZI]L12 ; k = 1,2, ... ,k v 1,2, ... ,v 2.3

and

e kj = rkL 11(1 - ZoL 10)-Ic j  k,j = 1,2, ...,k 2.4

Here, q and v denote the number of external system inputs and outputs

which are typically few in number. As such, the ekj array composed of k2

entries dominates the data base. Also note that all of the entries in the

data base are formulated in terms of the nominal component values and, as

such, the data base may be generated off-line without a priori knowledge

of the perturbations to be analyzed. Finally, the entire data base may be

generated with the aid of only a single n by n (sparse) matrix inverse.

Now, if we assume that only a single parameter is perturbed, i.e.

Z ck6krk 2.5

Is! for some fixed k = 1,2, ... ,k, to retrieve sqv from the data base we must

evaluate

sqv =L22qv + L [Z + ck6kr k l-lZ + ck6krk]L v 2.6

in terms of the elements of our data base and the variable parameter, 6

To this end we invoke Householder's formula 1

7
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(W4 + M -1 = W-1 - W-1x(I + YW-Ix)-Iyw-1  2.7

with W = (0 - ZoL11), x -c%6k , and Y = rkLil obtaining

(l-[Z ° + ckkk]LLl)-1=[(l - ZoLI1 ) + (-ck6 k )(rkLl3-1

=(1-Z o LI- + (l-Z o L U1Ck 6k (1-4 k L1(l-Z o Lll)- Ic k 6k)-l1rk Ll(1_Z o Lll)I

= o-Zl (r LLll)- L 11-o ll)-2.8

1 k k k 1

Now, upon substitution of 2.8 into 2.6 we obtain

sqv =L2qv + L q (1_[Zo+ck 6k r k]L 1)-l[Zo+ck6k r k]L2
=qv +-L [Zo+ck6krk]L2

22 21 [-0 Zo 1 2

Lq 1(l-Z L)Ick6 k rk L(-ZoL l -[Zo+Ck6krk]L 2

+ 21 o 1 r 11( oZ1 1  [Z12

1 6kkk

6k-L 2bqkkkrkLv

= rqv + 6 k lk v b L(-ZL 11) Z0L1 2 + (6k) 12
0 o 1 -6 kekk

6kbqkdkv + (6k) 
2[- k e kkr L + bqkekk r k L2 k k 2.

= S1v + = 6kbqd 2.
o 1 - kekk o 1 kkk

which is the desired symbolic transfer function.

If we assume that two parameters are perturbed; that is

. l = c 6 r + cJ 6 r 2.10

a similar formula can be obtained wherein Householder's formula is applied

twice. Since this formula is subsumed by the general retreival formula derived

in the following section, we simply state the result without proof. In

particular,

Mae& 8:



qv + qv ( q Z +k kk I 1f kk i V
s L22 + o - Z0+C6 r + c 6 r IL 1)- [Z 04 r cj 6j r 'L1

= sqv + 6 k kdk+6b'd +k6 - kbj v i kdkvekbjj~
0 1 - k ekk - ei + 6k 6i(e kk eJi e ekj t! 2.11

Li9
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Il1. Retreival Theorem

As is apparent from equation 2.11, our retreival formulas are quite

complex, even for the case p = 2 and, as such, a more compact notation is

required if they are to be tractable. To this end, we assume that

6k; k = 1,2, ... ,p: denote the potentially variable parameters and that

Z= ck6krk = CAR 3.1
k=l

Of course, the same expression applies to any set of p potentially variable

parameters given an appropriate change of the index set. To obtain the re-

quired symbolic transfer function for

S = L22+L21(l-[Zo+Zl]Lll)- [Z +Zl]L 3.2

with the above specified Z1 we now define the following matrices made up of

elements from our data base

-11 12 lV
o 0 0

21 22 .. 2V I
0  0

So  3.3

Sql q2 Sq
0 0 0 .

11 1 12
b b ... b

21 22 2
B b b ... b 3.4

10
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-d1  dl ... dlV
d2 1 d2 2  ...

D= 3.5

dp l  dp2  dpV

11 12 ip-
e e ... e21 22

e e ... e 2p 3.6

pl p2  PP
e e ...

while A is defined as per equation 1.12.

THEOREM: Using the above notation

S = L22+L21 (1-[ZoZ]LI)-l[Z+Z]L12  S + B(l AE) AD

Proof: First, we observe that

So = L2 2 + L2 1(I-ZoLII) 
1 ZoL1 2  3.7

is just the nominal system transfer function matrix while

B = L2 1(I-ZoL1 )-1 C 3.8

and

D= REI + LII(1-Z L11 )-I Z1L1 2 = RIlZo )- I  3.9

via Householder's formula. Finally,

E = RL11(l-ZoL)11 -C

where R and C are as defined by equations 1.10 and 1.11. As such,

1 11
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(1 - 1 = (1 - eRL11 (1-ZoLl )-lC)- 1

= [1 + ARLll(1 - (1-ZoLl) -1CCRL1 1 (1-ZoL11) l-C

= [1 + ARL11(1 - ZoL11 - Z1L1 1--

= [1 + ARL11(1-ZL11 )
1 C3 3.10

where we have invoked Householder's formula with Z = 1, X = ARL11, and

Y = (1-ZoL 11)-1C; and equation 1.9. As such,

So + B(1 - 6E)-IAD = So + L21(1-ZoL11)-1C[1 + ARL11(1-ZL 11)- 1CIAR(1-L11Z0)-1L 12

= So+L2](1-Zoll)-I[ZI + ZLl(1-ZL 1)-Z](1-L11Z0)- 1L12

= S0 + L21(1-ZoLll)- 1{[(I-ZLI)+Z1 L11](1-ZL 11
1)-Iz 1( L l zO F- L12

= S0 + L2 1 (1-Z 0L1 1)- 1 (1-Z0Lll)(1-ZL 1 1)-z 1 (1-LlZo)- 1L12

= S + L21(1-ZL1 ) I'z1(1-L11zOF1L12

= L22 + L2 1(1-ZoL11 )- 1ZoL12 + L21(1-ZLll)-1Z1(1-111z0)-1L12

= L22 + L21 Z(1-L11Zo)
1 L12 + L21(1-ZL1)

1Z1(1-L11Zo) 1L12
22 2-1 0 1 1 (1 - 11  1)- 11L 12

)-11L 22 +L 21 [Z0 + (1-ZL 11 Z1 ](1-L 11 0 )L12

1 -1. = L2 2 +L 2 1 (-ZL 110 [(1-ZL 11 )Z0 + Z1](1-L 1 1Zo)-1L12

= L2 2 +L21 (1-ZL11 
1 [Z - ZLl 1Zl](1-1 11Z1Y 1 2

= L2 2 + L2 1 (1-ZL 1 1
) - I Z[1-L 1 1 Zo ] (1-L11Z0)-lL12

= L22 +L21 (1-ZL 11 )-L 1 2 =S

as required. //12
12
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IV. Sensitivity Formulae

If one is working directly with the component connection model, it is

well known4 that the sensitivity of S with respect to a parameter, 6i , can be

computed via the formula

dSi LS I ZL I ) - I d i -zL[d I
L 21' 11' [I L 1 1  1 1 12 4.1

and hence it is appropriate" to ask whether or not such a sensitivity matrix

can also be computed from our data base. Since the expression

S S + B(l " AE)-IAD 4.2

is formally identical to 1.4, if 1 < i < p we may write

Fd B(l -AE)' 1 M.[I + E(-EE AID4.3

where

0-
0

M. dA 4.4

d61

0

with the one appearing in the ith diagonal entry. Clearly, the expression

#4 can be computed directly from the data base with the same level of computational

effort as required for the retreival formula.

In the case where 6i is not included in the given set of parameters which

13
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deviate from nominal, i > p in our notation, we must first augment the B, E. D,

and A matrices to include 6 and then apply equation 4.3 to the augmented

system. To this end we let

bl bi ... bP bli

b21  b
2 2  b2P b2 i

Bi  4.5

q bq2 bqP b i

d11  d12  l _

d21 d22  ... 2v

Di 
4.6

dPl dp2  ... dpv

diI di2  ... iv

eI1 e12  ... elP eli

e21 e22 ... 2p e2 i

E i  .4.7

eP1 ep2 ... e ep i

il i2 ip ii
e e .. e e

and
'3.. ..

~a -- 4.8
0 0

The we obtain the retreival formulae

S = S + B( a Ei)-AD 4.9

and
!i 1  i i 1 il-ai 4.10

[ 614
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V. Updating the Data Base

In many applications one uses a data base such as that described above,

as a design tool to aid in simulating the effects of various proposed

modifications to the system. When such a modification is finally implemented

it is then necessary to update the data base to reflect the new nominal

parameter values

io = Z + P ck6krk = Z + CAR 5.1
k=l 0

with the aid of Householder's formula we may compute

(l-ZoL1ll) [(l-ZoLll) - CARL,, ] -1 (l-ZoLl

+ (l-ZLl)-I C[l - ARLI(1-ZoL I-c]-1 ARL (l-Z L
o 1 1)11 oH

(l-ZoLl + (1-Z L1 1)-IC(I-AE)-IARL1 1 (-ZL1,)
1  5.2

which upon substitution into equation 2.4 yields

ekj ekJ + [ekl ek2 ,.. ekP](lAE)-IA e1J 5.3

e 2 j

:., 
e pj

Similarly,

bqJ = b + [bbl b .. bqP](l- )-1A eJ 5.4

eP

kv dkV kl k2 ekP](_AE)-IA dl v 5.5

d 2v

d pv

15



and

.qv = sqv + [bq  bq2 ... bqP](1-AE) -1 dV 5.6
0 0 d 2v

dPV

As such, the entries in our data base can be updated with a computational

effort which is commensurate with that required by the retreival formula.

16
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VI. Examples

Consider the simple RC op-amp circuit shown in figure 1. The component

connection

C

+ 0- R

+ IM , +++

V1  V2  V0

- p 0 -

Figure 1: RC Op-amp circuit.

model for this circuit takes the form

v r  0 R 0 i r  6.1

v C 0 v

vc  0 -1 -c ic 1 vi

i 1r 1 0 0 Vr + 0 6.1

vI  0 1 o v2 1944 6.2

0] 1r 0 1] YJ + [0~ 1  6.3v
r

rI
V21

Thus if all components taken to have nominal values of I we obtain

(1-ZoL11 ) 1 1 6.4
~17
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1 0 -s

"1)- 1 I 6.5

-1 S+

(1-ZoL 1l 0  = : I -i 6.6

0-0 +

(1-Z1 -s 6.7

and

1 0 -1

L + 11 L 1-Z0L lZ 0  S 1 6.8

Now, we may represent perturbations in the parameters C, R, and K via the

matrices 1

c6r 0 6.9

c262r2  1 6.10

and 18



c363r3  = 6.11

L~6L 1 1]

Combining the appropriate c and rJ matrices with the above expressions as

per equations 2.1 thru 2.4 we obtain the data base

s o = 1 6.12

bI = -s b2 = -1 b3 = s+] 6.13

d = I d2 = 0 d3 =  1 6.14

and

11 0 12 0 13 1e =0 e1 2 =0 e 3 =-1

e 2 1 =s e22 =0 e23  -s

e31  s e32 =-1 e33 =s 6.15

where we have deleted the q and v indices since we are dealing with a single-

input single-output system.

Now, if one desires to compute the symbolic transfer function with respect

to perturbations in the op-amp gain we have

S(s,6 3 .) = s + b 6d1 + 6 6.16N o0 3 33 - 3 6
1-6 e 1- 6s

Recalling that 63 represents a perturbation from a nominal parameter value of

3 3K= 1 our actual gain is K = K + = 1+6 , which upon substitution into 6.16

yields

S(s,K) = (l-K)s + 1 6.17

19
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which is the classical gain formula for such a circuit.

Finally, if we desire to update our data base to reflect a new nominal

value for the circuit parameters of C = 1, R = 1, and K 2 we invoke

3
equations 5.3 thru 5.6 with 6 = 1 yielding

= +b 363d3  2 - 61
S o =  S o + -b= 6 .18

1 0 1 3e33 1 - s
-11 =ell el6 3 1  ((- s) __ s_ 6.19

e.1 1 333 sl - 63e33  0 - 63(s) 6 3  s 6.19

and similarly for the other elements of the data base.

-

20

4-

-- ' " " - - . .. - ... -. , ~ ~-- --"- S'-,. ..= ,



VII. Conclusions

The preceeding development has been motivated by operational and main-

tenance considerations rather than the design considerations. In such an

environment one typically deals with a fixed nominal system, but carries

out repeated analyses thereon. As such, the cost of generating the required

data base is secondary compared to the cost of storing the data base and

retreiving information therefrom. In these respects we believe that our

data base is near optimal. Since the number of system inputs and outputs

is typically small our data base contains approximately k2 elements

(actually k2 + k(v+_q) + vq) where k is the total number of parameters

which are potentially variable. This data base, however, contains sufficient

information to permit one to retrjive symbolic transfer functions for any

number p < k of variable parameters. Indeed, the number of variable para-

meters in a symbolic transfer function is reflected only in the cost of

retreival which is on the order of p3 multiplications (actually p3 + p2v +

pLv(+l)). Since p is typically small, say five or less, this is minimal.

21
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